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We present the magnetic phase diagram of the �=2 quantum Hall system on the whole �rs ,EZ� plane. We fix
the phase boundaries of the paramagnetic and ferromagnetic states by looking for a softening of spin-density
excitations in the time-dependent Hartree-Fock theory. A nontrivial phase is obtained in the self-consistent
Hartree-Fock theory for rs�2 and EZ�0.06��c, where both the paramagnetic and ferromagnetic states show
spin instability. We show that the obtained phase is the spin-density wave �SDW� state, and explain the
mechanism how the SDW stabilizes.
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I. INTRODUCTION

The two-dimensional �2D� electron system in a strong
magnetic field, the quantum Hall system, has been a major
interest in condensed-matter physics because the large de-
generacy of each Landau level is expected to exhibit new
physics in the presence of the strong Coulomb repulsion. By
tilting the magnetic field, we can lift the degeneracy of up-
and down-spin electrons, and can explore the system from a
wider point of view.1 Experimental investigations of these
systems have been providing new insight into the correlation
in the quantum Hall systems.2–5 At the same time, a lot of
efforts have been made theoretically to examine the excited
as well as the ground state of the system.6–14 At present,
however, we are still waiting for a clear understanding even
of the ground state of the system.

The two-dimensional electron gas �2DEG� with a neutral-
izing background is described by a single �Wigner-Seitz� pa-
rameter rs, which is related to the electron density n by
1 /n=��rsa0�2 with a0 being the Bohr radius. In a perpen-
dicular magnetic field B, the kinetic energy is quantized into
discrete Landau levels with equal spacing ��c, where �c
=eB /mc is the cyclotron frequency of electron. Each Landau
level �with a fixed spin direction� can accommodate elec-
trons maximally at the density 1 / �2�l2�, where l=��c /eB is
the magnetic length. Then we define the filling factor �
=n / �2�l2� for a system specified by the density n of elec-
trons per unit area. By tilting the magnetic field, we can
introduce another independent parameter EZ, the Zeeman
splitting energy, because EZ is determined by the magnetic
field B itself while �c is fixed by its normal component.
Therefore, the quantum Hall system in a tilted magnetic field
may be specified by three parameters: the Wigner-Seitz pa-
rameter rs, the filling factor �, and the Zeeman energy EZ.

In this work, we concentrate on the integer quantum Hall
system with �=2 on the �rs ,EZ� plane. Figure 1 summarizes
the current knowledge of the phase diagram. In the small rs
and small EZ region, we expect that the paramagnetic phase
�P� ��↑=�↓=1� would be the ground state. On the other hand,
in the large rs or large EZ region, the system will be the
ferromagnetic state �F� ��↑=2,�↓=0�. Between these two
limits has been the unknown area. At present, only two
boundaries can be drawn in the phase diagram. One is the
boundary of the first-order transition between �P� and �F� for

EZ���c in the high-density �rs�1� region.6–8,10 This is un-
derstandable from Fig. 2 that depicts the situation with rs
=0; the system makes a transition from �P� to �F� as EZ
crosses ��c from below. For a finite but small rs��1�, the
transition takes place at EZ���c, which corresponds to the
situation �b� in Fig. 2 due to the gain in the Coulomb ex-
change interaction in �F�. The other is the second-order
boundary between �P� and the spin-density wave �SDW�
�Refs. 15 and 16� state at rs=2.01 for EZ=0,14 which shall be
explained later. Though other possibilities have been also
suggested,5,12,13,17–23 the phase diagram on the �rs ,EZ� plane
has not been known to date.

In this situation, we determine the phase diagram of the
�=2 system on the whole �rs ,EZ� plane in the framework of
the self-consistent Hartree-Fock �HF� theory. To complete
Fig. 1, we answer the following questions in this work.
Where are the boundaries between �P�, �F�, and the SDW?
Does �F� show the spin instability as �P� does? If so, what is
the new phase implied by the instability? Our main findings
and the answers to the above questions shall be summarized
by the phase diagram in Fig. 27 that displays all possible
phases and their boundaries on the �rs ,EZ� plane. We shall
see that the main features of the phase diagram are �i� a
first-order boundary between �P� and �F� in the large EZ re-
gion and �ii� a second-order boundary between �P� and the
SDW, and a first-order boundary between �F� and the SDW,
in the small EZ region.

first
order

second
order

F

P SDW

Ez / hωc

rs
0

?

FIG. 1. Current knowledge of the phase diagram in the mean-
field theory. Only two boundaries are known; one is the first-order
boundary between �P� and �F� for EZ���c and rs�1. The other is
the second-order boundary between �P� and SDW at rs=2.01 for
EZ=0. Unknown region is shown as a shaded area with a question
mark.
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In principle, phase boundaries in the HF theory could be
fixed by comparing energies of all possible HF solutions.
Without any insight into the ground state, however, it is al-
most impossible to find HF solutions. We take, therefore,
another way; we study dispersions of excited states on a HF
solution to fix its boundary in the phase diagram. A vanishing
excitation energy of a collective boson in the time-dependent
Hartree-Fock �TDHF� theory means that the assumed ground
state is no more the lowest energy Slater determinant. The
most promising excitation mode is obviously the spin-
density excitation �SDE�.6,12,14,19,20 In this case, the new
ground state can be described as a condensate of the SDE
boson with the vanishing excitation energy in a first
approximation.24 This is sufficient to perform the HF calcu-
lation to obtain the exact form of the new ground state,
which shall be shown to be the SDW state.

We start with the two trivial HF solutions �P� and �F�.
Then we examine the SDE spectra on �P� and �F�, and find
the spin instability that signals a new HF ground state. As a
result, we end up with four solutions to the HF equation: the
paramagnetic state �P�, the SDW state �SDW�P�� that origi-
nates from �P�, the ferromagnetic state �F�, and the SDW
state �SDW�F�� that derives from �F�. By comparing energies
of these four solutions, we determine the ground state on the
whole �rs ,EZ� plane.

The plan of the paper is the following. In Sec. II, we
briefly present general arguments on the HF and the TDHF
theories to describe the ground and the excited states, respec-
tively. In Sec. III, we discuss the spin instability of �P� and
�F� for EZ=0. Then we determine the ground state for EZ
=0 in Sec. IV. Here we show that the SDW is the ground
state for 2.01�rs�2.15, and explain in detail how the SDW
gains energy. We generalize the analysis in Secs. III and IV
to EZ�0 systems in Secs. V and VI, respectively. In Sec.
VII, we make discussions on the basis of our results. Here
we show the main result of the present work, the phase dia-

gram on the whole �rs ,EZ� plane in Fig. 27. Then we com-
pare our results with other theoretical approaches and experi-
mental results. In Sec. VIII, we present conclusions.

II. FORMALISM

In this section, we explain the general formalism to de-
scribe the instability of �P� and its resultant appearance of the
SDW for EZ=0. The theoretical framework is the HF
theory14,16,24 and the TDHF theory.16,20,24 We shall see that
the extension of the framework to the analysis of �F� or EZ
�0 cases is straightforward.

A. Landau level

We consider the integer quantum Hall system in the xy
plane of size L	L, which is described by the following
Hamiltonian:

H = �
i

1

2m
�pi +

e

c
A�ri�	2

+
1

2�
i�j

e2

�ri − r j�2
. �1�

We choose the Landau gauge, A= �0,Bx�, to describe an
electron of charge −e in the xy plane with a magnetic field B
in the z direction. Note that the ratio of the average electron-
electron interaction, e2 / l, to the quanta of the kinetic energy,
��c, is given by

e2/l
��c

=
l

a0
=��

2
rs. �2�

For the �=2 system that we investigate in this work, the ratio
is given just by rs.

Now, we define the complete set of single-particle states
by

1

2m
�p +

e

c
A	2


�k�r� = ��
�0�
�k�r� , �3�

where the Landau-level wave function is given by


�k�r� =
eiky

�L

��x + kl2� , �4�

where �=0,1 , . . . is the Landau index. Here, 
� is a one-
dimensional harmonic-oscillator eigenstate with oscillator
frequency �c, and ��

�0�=��c��+ 1
2 �. The single-particle basis,

which is specified by the orbital and the spin part, is then
given in the second quantized form as 
a��

† �k��0��, where �
= ↑ ,↓ stands for spin direction.

B. Excited state

Here we explain the description of excited states on �P� in
the TDHF framework. We are interested in excitations on �P�
that exhibit softening and therefore signal the instability
of �P�. In this work, we examine the SDE, which are excited
by ��eiq·r, because the charge-density excitation �CDE�
excited by eiq·r has much higher excitation energy than the
SDE due to the direct repulsive particle-hole �ph�
interaction.5,12,13,19,20,22

(a) (b) (c)

Ez

hωc

α=1

α=0

FIG. 2. Effect of Zeeman splitting EZ on the �=2 system at rs

=0 �without Coulomb interaction between electrons�. As EZ in-
creases, the system changes from �a� the paramagnetic state �P�
��↑=�↓=1� to �c� the ferromagnetic state �F� ��↑=2,�↓=0�. �a�: �P�
for EZ=0. �b�: �P� for EZ�0. �c�: �F�. Landau index is denoted as
�=0,1.
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The external perturbation in the SDE channel, �+�q�
=�+eiq·r with wave number q= �qx ,qy�, is given in the
second-quantized form as

�+�q� = �
��

�
k

a�↑
† �k + qy�a�↓�k�e−i
�k�F���q�

= �
��

C���q�F���q� , �5�

where 
�k�= �k+qy /2�qxl
2, and F���q� is defined in the Ap-

pendix. We have also defined C���q� in the second line. Now
we adopt the convention to use h and p, respectively, for the
Landau indices of occupied and unoccupied states. For the
paramagnetic state �P� ��↑=�↓=1�, these Landau indices, h
and p, take on h=0 and p=1,2 , . . ..

In the standard TDHF theory, we describe the creation
operator of the nth excited state in the �+ SDE channel as

O�n��q� = �
ph


xph
�n�Cph�q� − yph

�n�Chp�q�� , �6�

where the first term describes ph excitations along the line
�a� in Fig. 3, and the second term corresponds to the ph
de-excitations along the line �b�. Here the amplitudes xph

�n� and
yph

�n� are determined by the TDHF equation in the following
matrix form:

� A�q� B�q�
B��− q� A��− q� 	�X�n�

Y�n� 	 = E�n�� X�n�

− Y�n� 	 , �7�

where E�n� is the excitation energy of the nth excited state
and the column vectors X�n� and Y�n� are specified by

X�n��ph=xph

�n� and 
Y�n��ph=yph
�n�, respectively. The matrices A

and B are defined as


A�q��ph,p�h� = ��p − �h��p,p��h,h� − Xph�p�h�q� ,


B�q��ph,p�h� = − Xpp�h�h�q� , �8�

where diagrammatic expressions for Xph�p�h�q� and
Xpp�h�h�q� are given in Fig. 4. Here, X�������q� represents a
special combination of the matrix elements of Coulomb in-
teraction in the ph channel, and is defined in the Appendix.
The HF single-particle energy is denoted by

�� = ��
�0� + ��

HF, �9�

where ��
HF is the Fock exchange self-energy of level �

shown in Fig. 5, and is given by

��
HF = − �

h

X�hh��0� . �10�

We present several examples of X�������0� explicitly in the
Appendix.

To summarize, the lowest energy solution of Eq. �7� as a
function of q= �q� for a fixed value of rs determines the dis-
persion of the SDE.

C. Ground state

The paramagnetic state �P� ��↑=�↓=1� constitutes a solu-
tion to the HF equation for any value of rs, and the same is
true for the ferromagnetic state �F� ��↑=2,�↓=0�. Suppose
we solve Eq. �7� to obtain the excitation energy E�n� as a
function of q= �q� for a fixed value of rs. If �P� is a stable
Slater determinant for the fixed rs, all the excitations would
appear with real positive energies. Once we observe a van-
ishing excitation energy �E�n�→0�, however, we need to
search for a new ground state. Here the correspondence is
exact; the vanishing excitation energy in the TDHF theory
means that the assumed HF state is no more the local mini-
mum on the energy surface spanned by Slater determinants,
signaling a second-order transition to a new HF ground
state.16,24

Now we are to search for the new HF ground state for
each value of rs, for which the SDE dispersion exhibits in-
stability of �P�. This can be achieved using the density matrix
in the following manner.14

Let us first denote the density matrix of an arbitrary Slater
determinant ��� as

���,���k,k�� = ���a��
† �k��a���k���� , �11�

where �2=� is required for ��� being a Slater
determinant.16,24 As an example, for the paramagnetic state

α = 0

α = 1

α = 2

(a) (b)

kk+qy

} P

h

FIG. 3. Excitations induced by �+�q� on �P� with �=2. Landau
indices are denoted by �. Solid and hatched arrows represent, re-
spectively, occupied and unoccupied spin states in �P�. For the �
=2 system, Landau indices h and p in the text are given by h=0 and
p=1,2 , . . ., as indicated in the figure. Excitations by the first and the
second terms in Eq. �6� correspond to the lines denoted by �a� and
�b�, respectively.

k

k’k’+ qy

k+qy

p

p’

h

h’

h’h p’p
k

k’

k’+ qy

k+qy

FIG. 4. Diagrammatic expression for the ph interaction in the
�ph , p�h�� component of Eq. �8�. Left: Xph�p�h�q� in matrix A�q�.
Right: Xpp�h�h�q� in matrix B�q�. See the Appendix for detail.

α

β α

FIG. 5. Hartree-Fock exchange self-energy ��
HF of Eq. �10�.
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���= �P� with �=2, where single-particle states created by
a0↑

† �k� and a0↓
† �k� with all possible k values are occupied, the

only nonzero element of the density matrix is given by
�0�,0��k ,k�=1 for �= ↑ ,↓.

Let ��� be the new HF ground state which replaces �P�.
Then the general form of the density matrix of ��� can be
deduced by examining the effect of �+�q� on �P�. It is easily
seen that �+�q� first mixes single-particle states along the
line �a� in Fig. 6 to induce a component ap↑

† �k+qy�ah↓�k��P�
in ���. This in turn gives a nonzero value to the matrix
element

�p↑,h↓�k + qy,k� = ���ah↓
† �k�ap↑�k + qy���� , �12�

and its Hermitian conjugate in the first order of the external
perturbation. This is not, however, the whole story. The
above element of � immediately gives a mean field that
mixes single-particle states along the line �b�, and then �c� in
Fig. 6. Note that the condensate of the SDE boson in the �+
channel necessarily makes a mean field that produces a mix-
ture of states along the line �b� and therefore the condensate
of �− SDE boson. A little consideration along the above line
shows that the density matrix should have the following
structure for each combination of Landau indices �� and
wave number k:

� = ���↑,�↑�k + qy,k + qy� ��↑,�↓�k + qy,k�
��↓,�↑�k,k + qy� ��↓,�↓�k,k�

	 . �13�

Then, a straightforward calculation in the standard HF
framework shows that the single-particle HF Hamiltonian
has exactly the same structure as that of � of Eq. �13� to give

h = �h�↑,�↑�k + qy,k + qy� h�↑,�↓�k + qy,k�
h�↓,�↑�k,k + qy� h�↓,�↓�k,k�

	 , �14�

where each component is given by

h�↑,�↑ = ����� − X�������0����↑,��↑, �15�

h�↑,�↓ = − X�������q����↑,��↓, �16�

h�↓,�↑ = − X�������q����↓,��↑, �17�

h�↓,�↓ = ����� − X�������0����↓,��↓. �18�

Here repeated Landau indices are assumed to be summed
over the whole model space, and the arguments of � and h
are specified by Eqs. �13� and �14�, respectively. Now we can
write the HF eigenvalue equation in this system as

�
��

h��,��D��,j = � jD��,j, j = 1,2, . . . , �19�

which gives jth eigenenergy � j and the corresponding eigen-
vector D��,j. The HF ground state ��� can be obtained by
filling the lowest � eigenstates �j=1, . . . ,�� of Eq. �19�.
These new single-particle states are created by the following
operators specified by D��,j:

cj
†�k� = �

�


a�↑
† �k + qy�D�↑,j + a�↓

† �k�D�↓,j� . �20�

Then the density matrix of Eq. �13� can be given as

���,�� = �
j

D��,jD��,j
� . �21�

Note that the new basis 
cj
†�k��0�� is defined as a mixture

of up- and down-spin states as is clear from Eq. �20�, it
implies that the new HF state obtained here is featured by the
spin densities

�
↑
†�r�
↑�r�� =

1

2�l2�
�

��↑,�↑,

�
↑
†�r�
↓�r�� = �

�,�
��↓�↑

1

2�l2F���q�e−iq·r. �22�

These expressions show that ��z� is a constant in space, and
��x� and ��y� show a spiral structure with the wave number
q, indicating that the new HF state is a spiral SDW state.16

The expectation value of the Hamiltonian, ���H���, of a
Slater determinant ��� is a function of the density matrix
�.16,24 Then the total energy per particle, E
��, reads

E
�� =
1

N
���H��� =

1

�
�
�

�
�

��
�0����,��

−
1

2�
�

�,��

�,��

�
�

����,�����,���X�������0�

−
1

�
�

�,��

�,��

���↓,�↑��↑,��↓X�������q� = E1 + E2 + E3,

�23�

which stands for the total energy per electron 
N
=�L2 / �2�l2� being the total number of electrons�. In the last
line, we have defined E1, E2, and E3 for later use. Here E1 is
the kinetic energy and E2+E3 is the exchange energy in
terms of the new basis states of Eq. �20�. Note that E3 derives
from the mixture of single-particle states with momentum
k+qy and k in Eq. �20�, and is absent for �P�.

α = 0

α = 1

α = 2
(a) (b)

(c)(c)

kk+qy

} P

h

FIG. 6. Effects of spin fluctuations on the paramagnetic state �P�
with �=2. Lines denoted by �a�, �b�, and �c� indicate mixing of
single-particle states induced by the self-consistent HF calculation.
�a�: mixing in the zeroth order in the Coulomb interaction. �b�:
mixing in the first order. �c�: mixing in the second order. Notation is
the same as for Fig. 3.
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To summarize, we have presented the HF theory to de-
scribe the SDW ground state in terms of the density matrix.
The minimum of E
�� of Eq. �23� subject to �2=� can now
be obtained by the self-consistent solution of Eqs. �15�–�19�
and �21�. The solution should be the SDW state where �P�
exhibits spin instabilities.

At the end, we emphasize that X�������q� of Eqs. �A7�
and �A8�, which is a special combination of the matrix ele-
ments of Coulomb interaction, appears in Eq. �7� in the study
of the excited states, and in Eqs. �14� and �23� in the study of
the SDW ground state. This fact clearly indicates that the
softening of the SDE and the stabilization of the SDW phase
can be investigated in a unified way in terms of X�������q�,
the exchange interaction defined in the ph channel.

D. Numerical recipes

Here we make several points on numerical calculations
for the �=2 system. In the TDHF calculation, the model
space to give convergent results depends on rs and q. For
rs�1, where the correlation is weak, the model space with
the lowest three or four Landau levels is sufficient up to q
�4l−1. On the other hand, for rs�5, we need the lowest
seven or eight Landau levels to achieve convergence in the
same region of q.

Another point is on the phase. There are several phase
factors in the formulas we have presented. In Eq. �5�, for
example, we have the k-dependent phase factor 
�k�= �k
+qy /2�qxl

2. In the definition of F���q� and X�������q� given
in the Appendix, we have products of phase factors of the
form N�= i�e−i��, where � is defined as q= �qx ,qy�
= �q cos � ,q sin ��. Though physical quantities such as exci-
tation spectra or the ground-state energy do not depend on
�,13,14 these phase factors enter the density matrix � of Eq.
�13� and therefore the HF Hamiltonian h of Eq. �14�. In order
to get rid of these phase factors in what follows, we fix the
external momentum q in the y direction, q= �0,q�, i.e., �
=� /2, so that we have 
�k�=0 and N�=1. Then we can
show easily that � of Eq. �13� is independent of k, and the
same is true for h of Eq. �14�. Another merit of this conven-
tion ��=� /2� is that X�������q�=X�������q� becomes a real
quantity, as can be seen from Eq. �A10�, which allows us to
use real quantities only.

III. INSTABILITY FOR EZ=0

In this section, we examine possible softening of the SDE
on �P� and �F� in the TDHF framework for EZ=0.

A. Instability of �P‹

Let us first note that the total energy per particle, EP, of
�P�, which is characterized by the nonzero element
�0�,0��k ,k�=1 for �= ↑ ,↓, is given by Eq. �23� as

EP =
1

2
��c −

1

2
X0000�0� =

1

2
��c�1 −��

2
rs	 , �24�

where we have used Eqs. �2� and �A13�. We also notice that
the HF single-particle energy of Eq. �9� reads

�0↑ = �0↓ = ��c�1

2
−��

2
rs	 ,

�1↑ = �1↓ = ��c�3

2
−

1

2
��

2
rs	 . �25�

Now we examine the SDE. In Fig. 7, we show a sche-
matical expression for the SDE in the �+ and �− channels,
which obviously give the same excitation spectra for EZ=0.
In the following we consider the SDE on �P� in the �+ chan-
nel in the TDHF framework of Sec. II B.

Let us concentrate on the lowest energy SDE solution of
Eq. �7�, and denote its energy as E�SDE�. In Fig. 8, we plot
E�SDE� in units of ��c for rs=1 and 2. A particularly interest-
ing feature of the SDE dispersion is the magnetoroton mini-
mum that appears at a finite wave vector q�1.8l−1.12,20 Fig-
ure 8 shows that the magnetoroton energy falls with
decreasing density, ultimately to vanish at rs=2.01, indicat-
ing instability of �P� with respect to spin fluctuations induced
by �+eiq·r. This means that �P� is a local minimum of E
�� of
Eq. �23� for rs�2.01 only. For rs�2.01, we shall find the
SDW as the HF ground state in Sec. IV.

We can understand the above instability on the basis of
the relevant ph interaction −X�������q� which is shown in
Fig. 9. The SDE in the first-order perturbation theory, as
illustrated by the �+ line in Fig. 7, is featured by the follow-
ing dispersion:19

E�SDE��1st order� = ��c − X1010�q� .

We see that the dispersion for rs=1 in Fig. 8 behaves in the
same way as −X1010�q� in Fig. 9, showing that the above

FIG. 7. �Color online� Schematical expression for the SDE in
the �+ and �− channels. These two channels are degenerate for
EZ=0.
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ω
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q [ l-1 ]

rs = 1

rs = 2

FIG. 8. �Color online� TDHF dispersion E�SDE� of the lowest
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first-order perturbation theory works well for rs=1.
As rs increases, higher-order effects come into play. It is

visible in Fig. 8 that the TDHF equation for rs=2 enhances
the effect of the attraction of −X1010�q� �see the left process
in Fig. 4� in a nonlinear fashion around q�1.8l−1 to make
the system unstable. The main driving force for this nonlin-
ear effect comes from the ph interaction −X1100�q� in the
matrix B�q� in Eq. �7� �see the right process in Fig. 4�, which
has a maximum around q�1.7l−1 as shown in Fig. 9.

The above observation clearly explains �i� that the mag-
netoroton minimum in the small rs��1� region derives
mainly from the strong attraction around q�1.3l−1 in the ph
interaction −X1010�q� and �ii� that the spin instability at rs
�2, which is a nonlinear phenomenon, originates from a
cooperative effect of −X1010�q� and −X1100�q�.

B. Instability of �F‹

Here we investigate possible instabilities of the ferromag-
netic state �F� for EZ=0. Let us first note that the energy EF
of �F�, which is characterized by the nonzero element
��↓,�↓�k ,k�=1 for �=0,1, is given by Eq. �23� as

EF = ��c −
1

4
X0000�0� −

1

2
X1001�0� −

1

4
X1111�0�

= ��c�1 −
11

16
��

2
rs	 , �26�

where we have used Eq. �A13� in the Appendix.
Equations �24� and �26� give

EF − EP =
1

2
��c�1 −

3

8
��

2
rs	 , �27�

which implies that EP�EF for rs�2.13. This shows explic-
itly that the increase ��c /2 in the kinetic energy in EF−EP is
compensated by the increase in the exchange interaction for
rs�2.13 to make EP�EF. Note that the stability of �F� in the
large rs regime originates from the exchange interaction that
operates between the same spin states only, but not from the
Zeeman energy.

Let us turn to the SDE on �F�. As shown schematically in
Fig. 10, the relevant SDE is induced by �−eiq·r. Now we start
with large rs region where �F� is the ground state, and inves-
tigate the SDE spectra of �F� in the TDHF framework. Note
here that the HF single-particle energy of Eq. �9� reads now

�0↑ = ��c�1

2
−

3

2
��

2
rs	, �0↓ =

1

2
��c,

�1↑ = ��c�3

2
−

5

4
��

2
rs	, �1↓ =

3

2
��c, �28�

showing that �1↑��0↓ for 0.638�rs, as in Fig. 10.
Because there is no hole states for down-spin electrons in

�F� as shown in Fig. 10, B�q� and Y vanish identically in the
TDHF Eq. �7� to give

A�q�X�n� = E�n�X�n�. �29�

The TDHF dispersion of the lowest SDE, which is denoted
as E�SDE�, is shown in Fig. 11 for rs=3 and rs=1.5. The figure
shows �i� that the system is stable at rs=3 against the spin
fluctuation and �ii� that at rs=1.5 the dispersion is negative
for q�1.7l−1, signaling the instability between rs=3 and rs
=1.5. Note that E�SDE� vanishes identically at q=0 because
�− commutes with the Hamiltonian. By investigating the dis-
persion in detail, we have found that the onset of the insta-
bility is at rs=2.15 and at the wave number q�0.2l−1. This
means that �F� is a local minimum of E
�� of Eq. �23� for
rs�2.15 only.

Here we observe the spin instability of �F� as rs decreases
across rs=2.15. This makes a clear contrast with the situation
for �P�, where the instability is observed as rs increases
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FIG. 9. �Color online� q dependence of the ph exchange inter-
action −X�������q� in units of e2 / l for typical index sets ��������.
Multiplying the displayed quantities by the ratio of Eq. �2�, we can
change the unit from e2 / l to ��c for a system with any rs. Note that
the symmetry property of Eq. �A9� gives, e.g., X1010�q�=X0101�q�.

FIG. 10. �Color online� Schematical expression for the SDE on
�F� for EZ=0.
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across rs=2.01. This difference can be explained using the rs
dependence of A�q� in Eq. �29�. In Fig. 12, we plot diagonal
components 
A�q��ph,ph with q=1.0l−1 as a function of rs for
several sets of indices. They are presented by straight lines
because the Coulomb interaction is proportional to rs, as
shown in Eq. �2�. Note here that particle states specified by p
have �=↓, and hole states h have �=↑. Figure 12 shows
clearly that 
A�q��01,01 becomes negative as rs decreases, ap-
proaching −��c at rs=0. This implies that the ph excitation
�particle=0↓ , hole=1↑� becomes unstable �negative excita-
tion energy� in the small rs region, which in turn explains in
an obvious way why we observe the spin instability as we
decrease rs.

Let us come to the q dependence of the dispersion in Fig.
11. We plot several examples of 
A�q��ph,p�h� for rs=1.5 in
Fig. 13. At q=0, only two ph components, ph= �00� , �11�,
are involved in the SDE, which are decoupled from other
components at q=0 as is clear from Fig. 13. Then the rel-
evant 2	2 matrix in Eq. �29� is given by 
A�0��00,00
= 
A�0��11,11=−
A�0��00,11=−
A�0��11,00. This matrix gives
vanishing excitation energy at q=0 as seen in Fig. 11. Here
the eigenstate with vanishing energy is a coherent superpo-
sition of the two ph states, ph= �00� , �11�. If we increase q,

other components come into play. At rs=1.5, we see that

A�q��01,01, the lowest diagonal component of 
A�q��, is posi-
tive in the whole range of q, though it lowers with decreasing
rs as shown in Fig. 12. For finite q, however, ph= �01� com-
ponent couples with higher components, ph= �00� , �11� , . . .,
to change 
A�q��01,01 into the negative dispersion in Fig. 11.

By combining the above findings with the results in Sec.
III A, we have understood that neither �P� nor �F� is the
ground state for 2.01�rs�2.15.

IV. GROUND STATE FOR EZ=0

We perform the HF calculation in Sec. II C to obtain the
new HF ground state to replace �P� ��F�� where �P� ��F�� is
unstable. Then we compare all the obtained HF solutions to
determine the ground state.

A. �SDW(P)‹

Here we examine how the SDW replaces �P� for rs
�2.01. We first exhibit the area of spin instability of �P� in
the �rs ,q� plane in Fig. 14. The area denoted by “P: unstable”
shows that �P� is unstable there, i.e., a point �rs ,q� in that
area indicates that the paramagnetic state �P� with the rs
value is unstable with respect to the SDE of the wave num-
ber q. Suppose we start from �P� and increase rs. Then Fig.
14 shows that we observe the onset of the spin instability at
rs=2.01 for q�1.8l−1, which is in accordance with the
TDHF results shown in Fig. 8.

For each value of rs��2.01�, we have looked for the or-
dering wave number q that minimizes the energy of the
SDW solution. The optimal q is presented by the solid line
denoted by “SDW�P�” in Fig. 14. In the following, we de-
note the SDW state on the line SDW�P� as �SDW�P��, and its
energy as ESDW�P�, indicating that it is an SDW that derives
from �P�. We present ESDW�P� in Fig. 15 together with EP and
EF, to which we shall soon come back.
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B. �SDW(F)‹

Next we investigate the SDW that is to take the place of
�F� for rs�2.15. It is easy to apply the HF framework in Sec.
II C with minor modifications to the SDW that derives from
�F�. The results are presented in Figs. 14 and 15, where we
have defined �SDW�F�� and ESDW�F� in the same way as for
the paramagnetic case.

We see in Fig. 14 that both �SDW�F�� and �SDW�P�� are
the local minima of E
�� in some range of rs. It should be
stressed, however, that �SDW�F�� and �SDW�P�� are differ-
ent states. Roughly speaking, �SDW�P�� at rs=2.13, for ex-
ample, is a condensate of �+�q� and �−�−q� bosons with q
�1.5l−1 on �P�, while �SDW�F�� is a condensate of �−�q�
boson with q�0.2l−1 on �F�.

C. Ground state for EZ=0

Having obtained four solutions to the HF equation, we are
now ready to compare their energies EP, EF, ESDW�P�, and
ESDW�F� in Fig. 15 to determine the lowest energy solution
for each rs. We then conclude that the system is in �P� for
rs�2.01, �SDW�P�� for 2.01�rs�2.15, and �F� for 2.15
�rs, which is shown in Fig. 16. Though EF, ESDW�P�, and
ESDW�F� are almost degenerate at rs�2.15, we have con-
firmed that �SDW�F�� cannot be the ground state for any
value of rs. Note that the transition at rs=2.01 between �P�
and �SDW�P�� is of second order because it follows a soft-
ening of the SDE on �P�. On the other hand, the transition at
rs=2.15 between �F� and �SDW�P�� is clearly of first order.

D. What is �SDW(P)‹?

We have found that the system is in �SDW�P�� for 2.01
�rs�2.15, which we examine in some detail.

Here we consider a typical example of �SDW�P�� at rs
=2.13, which is defined at q=1.45l−1 as shown by the line
SDW�P� in Fig. 14. In this case, �SDW�P�� is obtained by
filling j=1,2 states of Eq. �20� which are defined by the
coefficients D�↑,j and D�↓,j given in Table I. To be explicit,
these two states �j=1,2� can be written as

�j = 1,k� = 0.69�0↑k + qy� + 0.69�0↓k� + ¯ ,

�j = 2,k� = 0.62�0↑k + qy� − 0.62�0↓k� + ¯ ,

which shows that the mixture of up and down-spin states are
very large.

With the coefficients in Table I, we can calculate the den-
sity matrix of Eq. �21� for the above �SDW�P��, which we
present in Table II. Then the expectation value of the spin
operators given in Eq. �22� is easily obtained; we find that
the �SDW�P�� at rs=2.13, q=1.45l−1 is featured by

�
↑
†�r�
↑�r�� = �
↓

†�r�
↓�r�� =
1

2�l2 ,

�
↑
†�r�
↓�r�� � 0.588

1

2�l2e−iq·r, �30�

which are tabulated in Table III with EZ�0 cases. Note that
the symmetric nature of the density matrix in Table II, which
can be traced back to the degeneracy of the SDE in the ��

channels. This means that �SDW�P�� is made by a conden-
sate of �+ and �− bosons with equal weights. This is realized
by the first line of Eq. �30� that gives ��z�=0. This implies
that the transition from �P� to �SDW�P�� does not tend to �F�.
The second line of Eq. �30� shows that �SDW�P�� at rs
=2.13 is a spiral SDW �Ref. 16� with the wave vector q
=1.45l−1.
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FIG. 15. �Color online� Energies of the four HF solutions, EP,
EF, ESDW�P�, and ESDW�F� for EZ=0. Because ESDW�F���EF� is al-
most degenerate with EF on this scale, it is presented by dots.

FIG. 16. �Color online� Phase diagram for EZ=0. The transition
�P�↔ �SDW�P�� at rs=2.01 is of second order, and �SDW�P��↔ �F�
is of first order.

TABLE I. Single-particle states �j=1,2� occupied in �SDW�P��
at rs=2.13, q=1.45l−1. Some of the coefficients D�↑,j and D�↓,j are
listed. The second column shows the eigenenergy � j of Eq. �19�.
Without the Coulomb interaction, � j =0.5��c for j=1,2.

� j

���c� D0↑,j D0↓,j D1↑,j D1↓,j

j=1 −2.84 0.69 0.69 0.15 −0.15

j=2 −1.86 0.62 −0.62 −0.31 −0.31

TABLE II. Density matrix ���,�����q� of �SDW�P�� at rs=2.13,
q=1.45l−1 for several sets of �� ,��� and �� ,���.

� ↑↑ ↑↓ ↓↑ ↓↓

00 0.85 −0.09 −0.09 0.85

01 −0.08 0.30 −0.30 0.08

10 −0.08 −0.30 0.30 0.08

11 0.12 −0.07 −0.07 0.12

02 −0.04 −0.12 −0.12 −0.04

20 −0.04 −0.12 −0.12 −0.08
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E. How can �SDW(P)‹ gain energy ?

Here we examine how the system gains energy by making
the second-order transition from �P� to �SDW�P�� on the ba-
sis of Eq. �23�.

Let us look at ESDW�P� and EP in Fig. 17, which are de-
composed into E1, E2, and E3 as in Eq. �23�. Here E1 repre-
sents the kinetic energy, and E2 and E3 are the exchange
energies. Note that E3 derives from the mixture of a�↑

† �k
+qy� and a�↓

† �k� as given in Eq. �20�, and is absent in EP.
Figure 17 shows that E1 and E2 of ESDW�P� are higher than
those of EP. However, the gain in E3 exceeds the loss in E1
and E2 to make �SDW�P�� the ground state for 2.01�rs
�2.15.

In order to understand the above mechanism, we study the
system at rs=2.13, which is �SDW�P�� for 1.43l−1�q
�2.08l−1. In Fig. 18, we present E
�� of Eq. �23� as a func-
tion of q. We see that the system can tune the density matrix
� by becoming �SDW�P�� to compensate the loss in E1 and
E2 by the gain in E3 in 1.43l−1�q�2.08l−1. This is the same
mechanism that we have seen as a function of rs in Fig. 17.
Let us look into E3 in some detail. In Fig. 19, we present
several terms that contribute to E3 in Eq. �23�. We realize

that the dip of −X1010�q� around q�1.3l−1 and the peak of
−X1100�q� around q�1.7l−1, which are shown in Fig. 9, are
the main origin of the large gain in E3. In other words, the
system makes the new HF basis by mixing two states with
wave number k and k+qy to form the SDW so that it can
fully exploit the attractive nature of −X1010�q� and −X1100�q�
in the above momentum region.

It is impossible to exaggerate the importance of X1010�q�
and X1100�q� in the present analysis. In the study of the SDE
dispersion, these two terms explain the softening phenomena
as the ph interaction. In the description of the SDW, on the
other hand, they give the attraction as the Fock exchange
energy. It is essential to realize the dual role played by these
two terms, i.e., the softening of the SDE and the stabilization
of the SDW.

V. INSTABILITY FOR EZÅ0

In this section, we examine the effect of a finite Zeeman
energy EZ on the results obtained in Sec III.

TABLE III. Spin densities of the SDW at each EZ in units of
1 /2�l2. While �
↑

†
↓� depends strongly on rs and EZ, �
↑
†
↑�

= �n↑� is almost independent of EZ �look at the data for rs=2.01�.

EZ rs q �
↑
†
↓� �
↑

†
↑�

0 2.01 1.75 0.110 1.00000

2.13 1.45 0.588 1.00000

0.02 2.01 1.75 0.115 1.00032

2.08 1.60 0.434 1.00652

0.04 2.01 1.75 0.128 1.00079

2.04 1.69 0.294 1.00480
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A. Instability of �P‹ for EZÅ0

We show pictorially the effect of the finite Zeeman energy
EZ�0 on �P� in Fig. 20. First, we realize that EP is not
dependent on EZ because the effects of EZ on the up-spin and
down-spin electrons cancel out each other exactly. Second,
we see that the SDE is not symmetric with respect to �+ and
�− modes; the �+ mode is favored. In fact, all the unper-
turbed ph energies lower by EZ in the �+ channel, and in-
crease by EZ in the �− channel. It is then easy to see that the
TDHF equation for finite EZ takes on the following form for
the �+ mode:

�A�q� − EZ B�q�
B��− q� A��− q� + EZ

	�X�n�

Y�n� 	 = �E�n� − EZ�� X�n�

− Y�n� 	 .

�31�

It is obvious that the corresponding equation for the �− mode
is obtained by changing EZ→−EZ in Eq. �31�.

Comparing Eq. �7� for EZ=0 and Eq. �31� for EZ�0, we
realize a notable point: the eigenvector �X�n� ,Y�n�� is com-
mon to Eqs. �7� and �31�, while the eigenenergy is E�n� for
Eq. �7� and E�n�−EZ for Eq. �31�. Let E�SDE� be the lowest
eigenenergy given by Eq. �7�. Then the onset of the spin
instability of �P� is given by E�SDE�=EZ for EZ�0, and by
E�SDE�=0 for EZ=0. Suppose we increase rs from the high-
density region where �P� is the ground state. Then the above
observation naturally leads us to the following points. First,
�P� becomes unstable at lower rs for EZ�0 than for EZ=0.
Second, E�SDE�=EZ��0� gives the instability of �P� with re-
spect to �+ mode only, i.e., �− mode is still stable at the
critical point. This is in clear contrast to EZ=0 case, where
the instability for both �+ and �− modes occur simulta-

neously at E�SDE�=0. The above asymmetry leads certainly to
�n↑�� �n↓� in the SDW state for EZ�0, as shall be shown
later.

In Fig. 21, we show the area of spin instability of �P� in
the �rs ,q� plane for EZ=0 and 0.06��c in the same way as in
Fig. 14. We realize that the domain of spin instability does
expand as expected in the above, but only surprising slowly,
with increasing EZ. In other words, �P� is quite stable against
the Zeeman splittings. This can be explained by Fig. 22,
which shows the minimum of the SDE dispersion on �P� at
EZ=0 as a function of rs, to display the softening of SDE
shown in Fig. 8. We see that the excitation energy vanishes
very rapidly in a nonlinear fashion as rs approaches the criti-
cal value rs=2.01 from below. Because the instability occurs
at the intersection E�SDE�=EZ, Fig. 22 clearly shows that the
critical value of rs lowers very slowly as EZ increases for
EZ�0.3��c. The above observation explains clearly the
slow expansion of the domain of instability in Fig. 21. It also
suggests that EZ hardly affects the SDE boson that is to con-
densate, which shall be confirmed later in Sec. VI A.

B. Instability of �F‹ for EZÅ0

Here we consider the SDE on �F� in the �− channel, which
is depicted in Fig. 23. We can easily realize that the total
energy per particle, EF, of �F� lowers by EZ /2, and that all
the unperturbed ph energies increase by EZ. Then we realize
that the TDHF equation for the SDE on �F� is given by
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FIG. 21. �Color online� Domain of spin instability of �P� for
EZ /��c=0 �shaded area� and 0.06 �hatched area�. The domain ex-
pands only very slowly with increasing EZ.
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FIG. 22. �Color online� Minimum of the TDHF dispersion
E�SDE� as a function of rs. Transition point for �P�↔ �SDW�P�� is
given by the intersection E�SDE�=EZ shown in the figure. For EZ

=0, the transition point is rs=2.01.

FIG. 20. �Color online� Schematical expression for the SDE on
�P� for EZ�0.

FIG. 23. �Color online� Schematical expression for the SDE on
�F� for EZ�0.
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�A�q� + Ez�X�n� = �E�n� + Ez�X�n�. �32�

In the same way as for the paramagnetic case, Eqs. �32� and
�29� have the same eigenvector X�n� but with different
eigenenergies E�n�+EZ and E�n�. In other words, the finite EZ
increases the excitation energy of SDE by EZ without affect-
ing its structure. This means that the finite EZ suppresses the
instability of �F� and the realization of �SDW�F�� as the
ground state, compared to the EZ=0 case in Fig. 10. This can
be confirmed by Fig. 24, where the area of the instability of
�F� is shown in the �rs ,q� plane for EZ=0 and 0.01��c, in the
same way as in Fig. 21 for �P�. The domain of the spin
instability shrinks very rapidly with increasing EZ, which
implies growing stability of �F�. Therefore, it is quite un-
likely that �SDW�F�� can be the ground state for a finite EZ
because it cannot be even at EZ=0, as shown in Fig. 16. In
fact, we shall see that there is no point on the �rs ,Ez� plane
where �SDW�F�� is the ground state.

VI. GROUND STATE FOR EZÅ0

The HF calculation to obtain the SDW state for EZ�0
goes in the same fashion as for the EZ=0 case in Sec. IV.
Here we explain the HF solution for �SDW�P�� and
�SDW�F�� for EZ�0.

A. �SDW(P)‹ for EZÅ0

We have performed the HF calculation in the whole do-
main of the spin instability in Fig. 21 for each value of EZ,
and have determined �SDW�P�� and ESDW�P� as a function of
rs and EZ. We show ESDW�P� in Fig. 25 together with

EP =
1

2
��c�1 −��

2
rs	 ,

EF = ��c�1 −
11

16
��

2
rs	 −

1

2
EZ, �33�

for several values of EZ. We realize that ESDW�P� for a fixed
value of rs decreases very slowly with increasing EZ. In fact,
ESDW�P� decreases by around one hundredth of EZ, while EF
lowers exactly by EZ /2.

The above point can be explained by examining the spin
densities of �SDW�P�� using Eq. �22�. The results are listed
in Table III together with the EZ=0 case. It is remarkable that
�n↑�= �
↑

†
↑��1 / �2�l2� is hardly affected by EZ, while
�
↑

†
↓� is strongly dependent on EZ and rs. In other words, EZ
does not reform the structure of the condensating boson, as
was suggested by comparison of Eqs. �7� and �31� in Sec.
V A; it just changes the amount of the condensate. The fact
�n↑���n↓� also explains that ESDW�P� is quite insensitive to
EZ; the effect of EZ should cancel out each other between up
and down-spin electrons.

The following point should be stressed at the end. One
might have expected naively that �SDW�P�� would change
into �F� with increasing EZ. However, our result, �n↑���n↓�
independently of EZ, denies the above naive expectation.

B. �SDW(F)‹ for EZÅ0

We have performed the HF calculation to obtain
�SDW�F�� and ESDW�F� in the whole domain of the spin in-
stability in Fig. 24 for each value of EZ. We plot ESDW�F� in
Fig. 26 together with EP and EF of Eq. �33�. It is notable that
the onset of �SDW�F�� is rs=2.15 for EZ=0, and rs=1.95 for
EZ=0.01��c, showing that the onset of �SDW�F�� moves
quite quickly to the smaller rs region with increasing EZ, in
accordance with Fig. 24. By combining the above observa-
tion with the fact that ESDW�P� lowers slightly with increasing
EZ as shown in Fig. 25, we can conclude that �SDW�F��
cannot be the ground state at any point on the �rs ,EZ� plane.

VII. RESULTS AND DISCUSSIONS

Here we present the main result of this work, the phase
diagram on the whole �rs ,EZ� plane that is to replace Fig. 1.
Then we compare our results with other theories and experi-
mental results.

A. Phase diagram

Having understood that ESDW�F� is not the lowest energy
in any case, we now compare EP, EF, and ESDW�P� to deter-
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FIG. 24. �Color online� Domain of spin instability of �F� for
EZ /��c=0 �shaded area� and 0.01 �hatched area�. The domain di-
minishes very rapidly with increasing EZ, which should be com-
pared with Fig. 21.
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FIG. 25. �Color online� Total energy per electron EP, EF, and
ESDW�P� in each phase in units of ��c for several values of EZ.
ESDW�P� is only slightly dependent on EZ, and is given for
EZ /��c=0 and 0.06 only. The onset of �SDW�P�� is rs=2.05 for
EZ /��c=0, and rs=2.00 for EZ /��c=0.06, respectively. Though
ESDW�P��EZ=0.06��c��ESDW�P��EZ=0�, they are degenerate on
this scale.
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mine the ground state in the whole �rs ,EZ� plane. The result
is summarized on the phase diagram shown in Fig. 27.

In order to explain the main features of the diagram, we
need only to know how the three energies, EP, EF, and
ESDW�P�, move with increasing EZ, which is given in Fig. 25.
We see �i� that EP is not dependent on EZ, �ii� that EF de-
creases exactly by EZ /2, and �iii� that ESDW�P� lowers only
slightly. Then, we can explain Fig. 27 as follows.

First, let us consider how the boundary value of rs be-
tween �P� and �SDW�P�� moves with increasing EZ. Figure
25 shows that the onset of �SDW�P�� moves slightly to the
smaller rs direction �rs=2.01 for EZ=0, and rs=2.00 for EZ
=0.06��c�. This explains the line in Fig. 27 that extends
from �rs=2.01, EZ=0� upwards slightly to the left to �rs
=2.00, EZ=0.06��c�.

Second, Fig. 25 shows that the intersection of EF and
ESDW�P� moves quickly to the smaller rs direction with in-

creasing EZ. This explains the line in Fig. 27 that goes from
�rs=2.15, EZ=0� to �rs=2.00, EZ=0.06��c�; �SDW�P�� is
taken over by �F� promptly with increasing EZ.

Third, for EZ /��c�0.06, �SDW�P�� cannot be the ground
state for any value of rs, as can be seen from Fig. 25. Then,
�P� or �F� becomes the ground state according to EF�EP.
The boundary is fixed by EP=EF, which is given by virtue of
Eq. �33� as the straight line

EZ

��c
= 1 −

3

8
��

2
rs, �34�

that goes from �rs=2.00, EZ=0.06��c� to �rs=0, EZ=��c�.
Fourth, for EZ /��c�1, �F� is the ground state for any

value of rs, i.e., EF�EP for any rs.
Let us summarize the above results. For 0�EZ /��c

�0.06, we have three phases �P�, �F�, and �SDW�P�� as in
the case of EZ=0. The boundary between �P� and �SDW�P��
is the second-order transition, and the boundary between �F�
and �SDW�P�� is of first order. For 0.06�EZ /��c�1, the
first-order phase transition occurs between �P� and �F� at
EP=EF. For 1�EZ /��c, �F� is always the ground state.

At the end, it should be mentioned here that our investi-
gation does not completely exclude other possibilities from
the phase diagram. Here we have compared four probable
phases, i.e., �P�, �F�, �SDW�P��, and �SDW�F��. If other
phases are to be the ground state, however, they are not
connected to either �P� or �F� by a second-order transition
induced by the spin-density operator. Because the transition
to such a phase does not accompany the softening of collec-
tive spin excitations, it would be difficult to find an evidence
of such a phase by investigating excitation spectra experi-
mentally.

B. Comparison with other theories

Here we compare our results with those of other ap-
proaches on the spin instability and the subsequent phase
transition. Giuliani and Quinn studied the same system in the
hatched area in Fig. 27, i.e., in the high-density �rs�1� and
large Zeeman splitting �EZ���c� regime, with a mean-field
theory some time ago.6–8 They concluded that the transition
between �P� and �F� is of first order, and denied the possibil-
ity of the SDW ground state. This is in accordance with our
results in the corresponding region in Fig. 27.

Another investigation of the present system was carried
out by Park and Jain.22 However, their results do not repro-
duce the transition between �P� and �SDW�P�� at rs=2.01 for
EZ=0, which is confirmed both by the TDHF and HF
calculations.14,20 So we believe that their results cannot be
compared directly with ours.

C. Comparison with experiment

In the high-density �rs�1� and large EZ region, there are
several empirical evidences that the �=2 paramagnetic sys-
tem shows a first-order transition.25–32 A clearly observed
transition point �rs�1.1,EZ�0.37��c� for �P�↔ �F� �Refs.
25 and 26� is marked by a cross in Fig. 27, which is quite
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FIG. 26. �Color online� Total energy per electron EP, EF, and
ESDW�F� in each phase in units of ��c for several values of EZ. The
onset of �SDW�F�� is rs=2.15 for EZ /��c=0, and rs=1.95 for
EZ /��c=0.01, respectively.

FIG. 27. �Color online� Magnetic phase diagram. Three phases,
�P�, �F�, and �SDW�P��, are shown with their boundaries. In the
hatched region, a first-order transition between �P� and �F� is ex-
pected theoretically �Refs. 6–8 and 10�. The cross at �rs�1.1,EZ

�0.37��c� indicates the first-order transition observed experimen-
tally �Refs. 25 and 26�. Empirical SDE energy is expected to vanish
in the shaded area �11�rs�14,EZ�0� �Ref. 5�.

KANAKO YOSHIZAWA AND KAZUO TAKAYANAGI PHYSICAL REVIEW B 79, 125321 �2009�

125321-12



close to our phase boundary, indicating that the HF theory
works well at rs�1.

In the low-density region, on the other hand, we do not
have much empirical information. Some time ago, Eriksson
et al.5 performed inelastic-light-scattering experiment to ex-
plore the possible spin instability of �=2 system with EZ
=0, which is to take place at rs�2 �Refs. 14 and 20� in the
HF theory as shown in Fig. 27. They observed �i� that the
SDE dispersion shows softening with increasing rs, but �ii�
that the density at rs�2 is still too high to cause the spin
instability. Though they could not find the instability, they
suggested, by extrapolating their data to the low-density re-
gion, that the SDE energy tends to zero at 11�rs�14 to
indicate a spin instability, which is shown as a shaded area in
Fig. 27.

Qualitatively, main features of the above empirical find-
ings are explained clearly by the present analysis of the SDE
and the phase diagram; the softening of SDE spectra with
increasing rs is a precursor of the SDW, and the vanishing
excitation energy of SDE marks the onset of SDW.

Quantitatively speaking, however, we notice several dif-
ferences between our phase diagram and empirical findings.
The experimental data suggest �i� that �P� is the ground state
in a wider area than obtained by the HF theory, i.e., the
system is found to be �P� up to rs�6 for EZ=0,5 and �ii� that
the spin instability of which the onset is rs=2.01 for EZ=0 in
the present HF theory is pushed into the lower density region
�11�rs�14�. A possible explanation is that fluctuations tend
to prevent stabilization of �F� and �SDW�P��, which gain
exchange energy by spin ordering. Another origin of the dif-
ference between our results and the available experimental
data comes from the thickness of the real system, which is
expected to shift the critical point of the spin instability to
the lower-density region. For the system studied in the
experiment,5 it is expected that the finite thickness would
push the critical point rs=2.01 of the HF theory to
rs�3.3.5,33

The above observation strongly suggests that the qualita-
tive feature of our phase diagram in Fig. 27 is true in real
systems. We believe that there are three phases, �P�, �F�, and
�SDW�P��, in the phase diagram. The following two limits
are easily understood; �i� in the small rs and small EZ region,
the system should be in �P�, and �ii� in the large rs or large EZ
region, �F� should be the ground state. On the phase bound-
aries, we have realized the following: first, there should be a
first-order boundary between �P� and �F� that extends from
�rs=0,EZ /��c=1� downwards to the right, which is con-
firmed both theoretically and experimentally, as shown Fig.
27. Second, it is quite likely that there is a second-order
boundary between �P� and �SDW�P�� in the small EZ region
at 11�rs�14. We believe, from the above analysis and dis-
cussion, that the phase diagram of the real system should be
obtained by shifting phase boundaries in the small EZ region
in Fig. 27 to the lower density side without affecting the
qualitative structure of the phase diagram.

Experimental information is strongly awaited in three di-
rections in connection with the SDW phase. The first one is
the dispersion of the SDE on �P� in the lower density region
�down to rs�10� for EZ�0 to confirm the spin instability.
The second one is to explore the SDW phase itself at rs

�10. The last one is the SDE on �F� which would exhibit a
softening for EZ�0, because EF�ESDW�P��ESDW�F� at rs
�2.15 in the HF theory as shown in Fig. 15. It is also im-
portant to fix experimentally the line of the first-order tran-
sition �P�↔ �F� on the �rs ,EZ� plane. We believe that experi-
ments in these directions should elucidate interrelations
between softening of the SDE dispersion, quantum phase
transition to the SDW state, and its description as a conden-
sate of the SDE boson.

VIII. CONCLUSION

To date, the phase diagram of the integer quantum Hall
system on the �rs ,EZ� plane has not been known in the mean-
field theory even for the �=2 system, as shown in Fig. 1. In
this situation, we have completed the phase diagram in Fig.
27 using the time-dependent Hartree-Fock �TDHF� and the
Hartree-Fock �HF� theories in the following manner. First,
we have looked for the onset of spin instabilities of the para-
magnetic �P� and ferromagnetic �F� phases on the whole
�rs ,EZ� plane by examining the TDHF spectra of the spin-
density excitation �SDE� in a systematic way, which in turn
fixes possible second-order phase boundaries of �P� and �F�.
Second, we have performed the HF calculation to obtain a
new HF ground state, the spin-density wave �SDW� indi-
cated by the instability, where neither �P� nor �F� is stable.
Our results are summarized in Fig. 27, which replaces Fig. 1.
By comparing our results with available experimental data,
we have argued that the phase diagram in Fig. 27 is consis-
tent with empirical findings.

Important points we have made in the present analysis are
the following. First, we have shown that the SDW is a stable
ground state at rs�2 and EZ�0, which was denied by ear-
lier works at rs�1 and EZ���c. Second, we have shown
that the structure of the SDW hardly changes with increasing
EZ. The naive expectation is thus denied that the SDW would
tend to the ferromagnetic phase with increasing EZ. Third,
we have clarified that the Coulomb exchange interaction in a
specific particle-hole channel plays a dual and important role
in the whole scenario of the quantum phase transition: one is
the softening of the SDE and the other is the stabilization of
the SDW. We believe that the present work has made a clear
step toward the full understanding of the integer quantum
Hall system in a tilted magnetic field.

APPENDIX: MATRIX ELEMENTS

In this appendix, we briefly review the matrix elements of
the Coulomb interaction v�r1 ,r2�=e2 / �r1−r2� using the
single-particle wave function 
�k�r� of Eq. �3� in the Landau
gauge.

Let us first define the matrix element of eiq·r with q
= �qx ,qy�= �q cos � ,q sin �� as

� dr
�k1

� �r�eiq·r
�k2
�r� = �k1−k2,qy

e− i
2

�k1+k2�qxl2F���q� .

�A1�

Here, F���q� is a vertex function given by
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F���q� = N�N�
�e−i��−���f���q� , �A2�

where N�= i�e−i�� is a phase factor that depends on the di-
rection of q, and f���q� is defined using the Laguerre poly-
nomial L �Ref. 34� as

f���q� =��!

�!
e−q2l2/4� ql

�2
	�−�

L�
�−��q2l2

2 	 . �A3�

Note that f���q�= �−1��−�f���q�, and therefore that the fol-
lowing symmetry properties hold for the vertex function:

F���− q� = �− 1��−�F���q� ,

F��
� �q� = F���− q� . �A4�

Now the matrix element of the Coulomb interaction in
Fig. 28 can be written as18–20

V�������k1,k2,k3,k4� =� dr1dr2
�k1

� �r1�
��k2

� �r2�v�r1,r2�

	
�k3
�r1�
��k4

�r2�

=
1

L
�k1+k2,k3+k4

V�������k1 − k4,k1 − k3� ,

�A5�

where V�������k1−k4 ,k1−k3� is given in terms of the vertex
function of Eq. �A2� as

V�������k,k�� =� dq

�2��22���k� − qy�

	e−ikqxl2v�q�F���q�F����
� �q� . �A6�

Here v�q�=2�e2 /q is the Fourier transform of the Coulomb
interaction e2 /r in the 2D system.

In the study of the SDE in the TDHF framework, the
following combination of matrix elements depicted in Fig.
29 appears naturally as the ph interaction:

ei
�k��
k�

V�������k + qy,k�,k� + qy,k�e−i
�k�� = X�������q� ,

�A7�

where 
�k�= �k+qy /2�qxl
2. By substituting Eqs. �A5� and

�A6� in Eq. �A7�, we obtain the following explicit form of
X�������q�:

X�������q� =� dp

�2��2e−i�p 	 q�zl
2
v�p�F���p�F����

� �p� .

�A8�

Then the symmetry property of X�������q� can be easily de-
rived from Eqs. �A4� and �A8� as

X�������q� = X�������− q� = �− 1��+��+�+��X�������q� ,

X������
� �q� = X�������q� . �A9�

In actual calculations, we have evaluated X�������q� as
follows. After performing the angular integral in Eq. �A8�,
we arrive at

X�������q� =
e2

l

N�N��

N�N��
� dp̂ f̂���p̂� f̂�����p̂�J�+��−�−���p̂q̂� ,

�A10�

where J is the Bessel function. Here we have introduced
dimensionless momentum variables p̂= pl and q̂=ql, and the

obvious notation f̂���p̂�= f���p�. Then the integral can be
performed analytically using integral formulas with Bessel
functions34 as

k1

α

β

α’

β’

k2

k3 k4

FIG. 28. Diagrammatic expression for V�������k1 ,k2 ,k3 ,k4� of
Eq. �A5�.
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kk’+ qy

k+qy

α

β

α’
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FIG. 29. Diagrammatic expression for the process that enters the
definition of X�������q� in Eq. �A7�.
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� dp̂ f̂���p̂� f̂���p̂�J��p̂q̂� =�� ! �!

� ! �!
��

2

1

2m

1

��2��

1

�!�l=0

�
� ! �− 1�l

�� − � + l� ! �� − l� ! l!

1

2l

	�
k=0

�
� ! �− 1�k

�� − � + k� ! �� − k� ! k!

1

2k �2m + 2l + 2k − 1� !! q̂�F�m + l + k +
1

2
,� + 1;−

q̂2

2
	 , �A11�

where ���, ���, ��0, and �−�+�−�+�=2m and F is
the confluent hypergeometric function defined by34

F��,�;z� = 1 +
�

�

z

1!
+

��� + 1�
��� + 1�

z2

2!
+ ¯ . �A12�

As an immediate application of the above formula, we ob-
tain, for example,

X0000�0� =
e2

l
��

2
,

X1001�0� = X1010�0� =
e2

l

1

2
��

2
,

X1111�0� =
e2

l

3

4
��

2
. �A13�
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